

Process Events In Style

This library aims to simplify the common pattern of event processing. It simplifies the process of filtering,
dispatching and pre-processing events as well as injecting dependencies in event processors.

The only requirement is that your events are regular python dictionaries.

Take a look at the following examples to get an overview of the features available! Of course, you can mix and combine
them in any way you like to create more complex scenarios.

Documentation

Contents:

	Core Concepts

	Processors

	Filters

	Dependencies

	Testing Processors

	API Documentation

Changelog

	v2.1.1: Fix negative ranks and document the -1 rank usage

	v2.1.0: Add number comparison filters

	v2.0.0: Refactor a lot of the internals, make filters more user friendly and dependency injection more intuitive

	v1.1.0: Add support for subprocessors

	v1.0.0: Move the state and decorators inside a class

	v0.0.1: Initial release

Indices and tables

	Index

	Module Index

	Search Page

Core Concepts

The core idea of this library is really simple. All you have are processors, filters and dependencies. Read on to learn
more about each concept.

Processors

Processors are simply functions that you create to process a certain event. Which processor gets called for which event
depends on the filters you use for that processor. More info on the processors page.

Filters

Filters are how you tell the library which processor to invoke for each event you want to process. There’s a few
different kinds of filters, the most common being the Exists filter and the Eq filter. More info on the
filters page.

Note

It’s possible to have ambiguous filters (see Filters for details). To resolve them, take a
look at Ranking Processors and Invocation Strategies.

Dependencies

Dependencies are a pretty key concept, because they allow your processors to depend on values obtained dynamically
(which is super important if you want to use external APIs in your processors). It’s also possible to depend on the
event (so you can have it injected into your processor). More info on the dependencies page.

Example

This example shows how these three concepts click together to make event processing easy. For the example, we just use
a stub for the SSM client and assume that the admin_email parameter has a value of admin@example.com.

from event_processor import EventProcessor, Event, Depends
from event_processor.filters import Exists

event_processor = EventProcessor()

def get_ssm():
 return FakeSSMClient()

@event_processor.processor(Exists("user.email"))
def user_is_admin(raw_event: Event, ssm_client: FakeSSMClient = Depends(get_ssm)) -> bool:
 ssm_response = ssm_client.get_parameter(Name="admin_email")
 admin_email = ssm_response["Parameter"]["Value"]
 return raw_event["user"]["email"] == admin_email

print("admin@example.com is admin:", event_processor.invoke({"user": {"email": "admin@example.com"}}))
print("user@example.com is admin:", event_processor.invoke({"user": {"email": "user@example.com"}}))

admin@example.com is admin: True
user@example.com is admin: False

You can see that because the event contains a value at user.email (i.e. this path Exists in the event), the
processor was invoked. It also received the event by specifying a parameter with the Event type and received an SSM
client by depending on the value returned by get_ssm.

Processors

Processors are the least involved part of the library. All you have to do is register your processors into an event
processor so that events can be dispatched to it.

Multiple Event Processors

Note that when you register a processor, it will be invoked only by the event processor for which it is registered.
For example,

from event_processor import EventProcessor, InvocationError
from event_processor.filters import Accept

event_processor = EventProcessor()
other_event_processor = EventProcessor()

@event_processor.processor(Accept())
def my_processor():
 pass

event_processor.invoke({}) # This is fine, a processor exists for the event

try:
 other_event_processor.invoke({}) # This will raise
except InvocationError:
 print("Raised!")

Raised!

Sub-Processors

In a big application, you might not want to have all your processors in the same module, so it’s possible to setup
sub-processors which get merged with a main processor.

my_module.py

from event_processor import EventProcessor
from event_processor.filters import Accept

sub_processor = EventProcessor()

@sub_processor.processor(Accept())
def my_processor():
 pass

main.py

from event_processor import EventProcessor
from event_processor.filters import Accept

from my_module.py import sub_processor

main_processor = EventProcessor()
main_processor.add_subprocessor(sub_processor)

Note that we are invoking on the main processor,
but the event will be dispatched to the sub-processor.
result = main_processor.invoke({})

print(result)

sub_processing!

Ranking Processors

Note

It’s not always necessary to use ranking. Take a look at the warning on the Filters page to
learn more and see if it’s something you need to be concerned about.

Since it’s not possible for the library to guess what should happen to a particular event matching multiple filters,
figuring that out is left up to the user. In most cases, it’s as simple as not worrying about it, but sometimes, dealing
with ambiguous filters is just unavoidable.

This is when you should use processor ranking. A processor’s rank is basically an indicator of how much priority it has
with regards to other processors. It’s what helps the library call the right processor for an event that might match
multiple processors.

Here’s an example of how you can use ranking :

Note

The default rank for processors is 0. The matching processor with the highest rank will be called. To learn
how to specify what to do when multiple processors match with the same rank, see Invocation Strategy.

Another useful thing to think about is that you can use the -1 rank to make a processor be called last when
there are multiple matches. This is especially useful when coupled with the Accept filter.

from event_processor import EventProcessor
from event_processor.filters import Exists, Eq

event_processor = EventProcessor()

@event_processor.processor(Exists("a"))
def processor_a():
 print("Processor a!")

@event_processor.processor(Eq("a", "b"), rank=1)
def processor_b():
 print("Processor b!")

event_processor.invoke({"a": "b"})
event_processor.invoke({"a": "not b"})

Processor b!
Processor a!

Invocation Strategy

To choose how to invoke your processor(s) in the case that multiple processors with the same rank all match a given
event, you have to choose an invocation strategy.

Note

The default invocation strategy is the First Match strategy.

First Match

This strategy calls the first matching processor (among those with the highest rank). It returns the processor’s return
value as-is.

All Matches

This strategy calls all the matching processors (that have the highest rank). It returns a tuple of results for all the
processors (even if only a single match occurred).

No Matches

This strategy calls none of the matching processors if there are more than one (and returns none). Otherwise, it calls
the single matching processor and returns its value as-is.

No Matches Strict

This strategy calls none of the matching processors if there are more than one, and it raises an exception. Otherwise,
it calls the single matching processors and returns its value as-is.

Example

To use a non-default invocation strategy, use the provided InvocationStrategies enum like so :

from event_processor import EventProcessor, InvocationStrategies
from event_processor.filters import Exists, Eq

event_processor = EventProcessor(invocation_strategy=InvocationStrategies.ALL_MATCHES)

@event_processor.processor(Exists("a"))
def processor_a():
 print("Processor a!")

@event_processor.processor(Eq("a", "b"))
def processor_b():
 print("Processor b!")

event_processor.invoke({"a": "b"})

Processor a!
Processor b!

Caveats

The main things to keep in mind for processors are :

	The same filter can only be used by one processor.

	It’s possible to have ambiguous filters and those should be resolved with ranking.

	Invocation strategies are used when the rank doesn’t resolve ambiguous filters.

Filters

There are a few available filters to help you make sure the correct processor is invoked for the correct event. To see
how to use filters in practice, see the core concepts.

Warning

It’s possible to create different filters that will match the same event. For example, when using the Exists
and Eq filters on the same key, if the Eq filter matches, then the Exists filter is guaranteed
to match.

Have a look at Ranking Processors to learn how to resolve these ambiguities. Also, note that these issues may
not apply to your context. You only have to worry about this if you have ambiguous filters.

Accept

This filter will always match any event it is presented with. It will even match things that are not dictionaries. Use
this if you need to take a default action whenever no processor exists for an event, or if an unexpected event was sent
to your system.

from event_processor.filters import Accept

accept = Accept()

print(accept.matches({}))
print(accept.matches(None))
print(accept.matches({"Hello", "World"}))

True
True
True

Exists

This filter matches events that contain a certain key (which can be nested), but the value can be anything.

from event_processor.filters import Exists

a_exists = Exists("a")
nested = Exists("a.b.c")

print(a_exists.matches({"a": None}))
print(a_exists.matches({"a": 2}))
print(a_exists.matches({}))
print(nested.matches({"a": {"b": {"c": None}}}))
print(nested.matches({"a": {"b": {"c": 0}}}))

True
True
False
True
True

Eq

This filter matches a subset of the events matched by Exists. It only matches the events where a specific value
is found at the specified key (as opposed to just existing).

from event_processor.filters import Eq

a_is_b = Eq("a", "b")
a_b_c_is_none = Eq("a.b.c", None)

print(a_is_b.matches({"a": "b"}))
print(a_is_b.matches({"a": 2}))
print(a_b_c_is_none.matches({"a": {"b": {"c": None}}}))
print(a_b_c_is_none.matches({"a": {"b": {"c": 0}}}))

True
False
True
False

NumCmp

This filter matches numbers that satisfy a comparison function with a given target.

Note

You should try to avoid using this filter directly and instead use Lt, Leq, Gt, Geq when possible.

The reason for this advisory is that in python, callables with the same code will compare as not being equal, which
means that if you start using lambdas as the comparator (and more critically, if you use different lambdas that have
the same behavior as comparators), then the equality checks for this filter will be inaccurate. This leads to
duplicate processors not raising exceptions at import time.

The tl;dr: if you use this filter, don’t use lambdas as comparators and don’t use different functions that do the
same thing either.

from event_processor.filters import NumCmp

def y_greater_than_twice_x(x, y):
 return (2 * x) < y

Note that the comparator is the same here, this is important.
You can use different comparators, but only if they do different things.
twice_a_less_than_four = NumCmp("a", y_greater_than_twice_x, 4)
twice_a_less_than_eight = NumCmp("a", y_greater_than_twice_x, 8)

print(twice_a_less_than_four.matches({"a": 1}))
print(twice_a_less_than_four.matches({"a": 2}))
print(twice_a_less_than_eight.matches({"a": 3}))
print(twice_a_less_than_eight.matches({"a": 4}))
print(twice_a_less_than_eight.matches({"not-a": 2}))

True
False
True
False
False

Lt, Leq, Gt, Geq

These filters all work in the same way in that they match when a value is present at the given path and it satisfies a
comparison operation.

	Lt means <

	Leq means <=

	Gt means >

	Geq means >=

from event_processor.filters import Lt, Leq, Gt, Geq

a_lt_0 = Lt("a", 0)
a_leq_0 = Leq("a", 0)
a_gt_0 = Gt("a", 0)
a_geq_0 = Geq("a", 0)

print(a_lt_0.matches({"a": 0}))
print(a_leq_0.matches({"a": 0}))
print(a_gt_0.matches({"a": 0}))
print(a_geq_0.matches({"a": 0}))

False
True
False
True

And

This filter does exactly what you would expect, and matches when all the events supplied to it as arguments match. It
acts as a logical AND between all its sub-filters.

from event_processor.filters import And, Exists

a_exists = Exists("a")
b_exists = Exists("b")
c_exists = Exists("c")

a_and_b_exist = And(a_exists, b_exists)
a_b_and_c_exist = And(a_exists, b_exists, c_exists)

print(a_and_b_exist.matches({"a": 0, "b": 0}))
print(a_and_b_exist.matches({"a": 0, "b": 0, "c": 0}))
print(a_b_and_c_exist.matches({"a": 0, "b": 0}))
print(a_b_and_c_exist.matches({"a": 0, "b": 0, "c": 0}))

True
True
False
True

You can also use & between processors instead of And explicitly to make your filters prettier.

from event_processor.filters import And, Exists

a_exists = Exists("a")
b_exists = Exists("b")
c_exists = Exists("c")

a_and_b_exist = a_exists & b_exists
a_b_and_c_exist = a_exists & b_exists & c_exists

print(a_and_b_exist.matches({"a": 0, "b": 0}))
print(a_and_b_exist.matches({"a": 0, "b": 0, "c": 0}))
print(a_b_and_c_exist.matches({"a": 0, "b": 0}))
print(a_b_and_c_exist.matches({"a": 0, "b": 0, "c": 0}))

True
True
False
True

Or

This filter is similar to the And filter, except that it will match if any of its sub-filters match.

from event_processor.filters import Or, Exists

a_exists = Exists("a")
b_exists = Exists("b")
c_exists = Exists("c")

a_b_or_c_exist = Or(a_exists, b_exists, c_exists)

print(a_b_or_c_exist.matches({"a": 0}))
print(a_b_or_c_exist.matches({"b": 0}))
print(a_b_or_c_exist.matches({"c": 0}))
print(a_b_or_c_exist.matches({"d": 0}))

True
True
True
False

Again, to make things more ergonomic, you can use | instead of Or.

from event_processor.filters import Or, Exists

a_exists = Exists("a")
b_exists = Exists("b")
c_exists = Exists("c")

a_b_or_c_exist = a_exists | b_exists | c_exists

print(a_b_or_c_exist.matches({"a": 0}))
print(a_b_or_c_exist.matches({"b": 0}))
print(a_b_or_c_exist.matches({"c": 0}))
print(a_b_or_c_exist.matches({"d": 0}))

True
True
True
False

Dependencies

Dependency injection is a useful tool that you can use to keep your code clean and testable, which is why this library
offers simple dependency injection out of the box. The current offering was heavily inspired by the excellent
FastAPI [https://fastapi.tiangolo.com/tutorial/dependencies/] framework.

Functional Dependencies

This type of dependency is the most flexible and powerful. It essentially allows you to inject a value into your
processor which will be computed from the result of another function of your choice.

Note

These dependencies are cached by default, so if that’s something you don’t want, be sure to specify cache=False
in your dependency.

Simple Example

from event_processor import EventProcessor, Depends
from event_processor.filters import Accept

event_processor = EventProcessor()

def get_my_value():
 return 42

@event_processor.processor(Accept())
def my_processor(my_value : int = Depends(get_my_value)):
 print(my_value)

event_processor.invoke({})

42

Caching Example

If a value should always be dynamic, caching can easily be disabled. Note that two dependencies can refer to the same
callable to get a value, and will still honor the caching decision. That is, one call to the callable may be cached,
whereas another may not.

from event_processor import EventProcessor, Depends
from event_processor.filters import Accept, Exists

event_processor = EventProcessor()
numeric_value = 0

def get_my_value():
 global numeric_value
 numeric_value = numeric_value + 1
 return numeric_value

@event_processor.processor(Accept())
def my_processor_with_caching(my_value : int = Depends(get_my_value)):
 print(my_value)

Note the rank is required because otherwise Accept() will match anything
@event_processor.processor(Exists("a"), rank=1)
def my_processor_with_caching(my_value : int = Depends(get_my_value, cache=False)):
 print(my_value)

event_processor.invoke({})
event_processor.invoke({})
event_processor.invoke({"a": 0})

1
1
2

Nesting Example

You can also nest dependencies as deep as you want to go, so you can easily re-use them.

from event_processor import EventProcessor, Depends
from event_processor.filters import Accept

event_processor = EventProcessor()

def get_zero():
 return 0

This dependency can itself depend on another value
def get_my_value(zero: int = Depends(get_zero)):
 return zero + 1

@event_processor.processor(Accept())
def my_processor_with_caching(my_value : int = Depends(get_my_value)):
 print(my_value)

event_processor.invoke({})

1

Class Dependencies

Classes themselves are also callables. By default, their init method will be called when you call them, so you can use
classes as dependencies as well.

from event_processor import EventProcessor, Depends, Event
from event_processor.filters import Exists

event_processor = EventProcessor()

class MyThing:
 def __init__(self, event: Event):
 self.username = event["username"]

 def get_username(self):
 return self.username

@event_processor.processor(Exists("username"))
def my_processor_with_caching(my_thing : MyThing = Depends(MyThing)):
 print(my_thing.get_username())

event_processor.invoke({"username": "someone"})

someone

Event Dependencies

Sometimes it’s useful for processors to receive a copy of the event that triggered their invocation, so you can easily
signal that it is required by your processor by having a parameter annotated with the Event type.

Note

Event dependencies follow the same rules as other dependencies in that other dependencies can depend on the event,
allowing dynamic fetching of data or just creation of a convenient type for the event.

Here’s an example of a simple event dependency :

from event_processor import EventProcessor, Event
from event_processor.filters import Accept

event_processor = EventProcessor()

@event_processor.processor(Accept())
def my_processor_with_caching(event: Event):
 print(event)

event_processor.invoke({"hello": "world"})

{'hello': 'world'}

And here’s an example where a dependency depends on the event :

from event_processor import EventProcessor, Event
from event_processor.filters import Exists

event_processor = EventProcessor()

This function could also query a database (in which case it might depend
on another function that will return a connection from a connection pool).
def extract_email(event: Event):
 return event["email"]

@event_processor.processor(Exists("email"))
def my_processor_with_caching(email: str = Depends(extract_email)):
 print(email)

event_processor.invoke({"email": "someone@example.com"})

someone@example.com

Testing Processors

Thanks to the separation between the definition and invocation of processors, it’s really easy to test processors. Since
the processor decorator returns the function as-is (and does not modify it), it’s possible to test your processor the
same way you would test any other function. Dependencies also make it easy to use mocks for your external service
dependencies.

Here’s an example of how you might test a processor :

from event_processor import EventProcessor, Event, Depends
from event_processor.filters import Exists

event_processor = EventProcessor()

class FakeDatabase:
 values = {
 "users": [
 {"email": "admin@example.com", "role": "admin"},
 {"email": "user@example.com", "role": "user"},
]
 }

 def get_role_by_email(self, email: str) -> str:
 user = [user for user in self.values["users"] if user["email"] == email][0]
 return user["role"]

database_instance = None
def get_database() -> FakeDatabase:
 global database_instance
 if database_instance is None:
 database_instance = FakeDatabase()
 return database_instance

def extract_email(event: Event):
 return event["email"]

@event_processor.processor(Exists("email"))
def user_is_admin(
 email: str = Depends(extract_email, cache=False),
 db_client: FakeDatabase = Depends(get_database),
):
 user_role = db_client.get_role_by_email(email)
 return user_role == "admin"

print(event_processor.invoke({"email": "user@example.com"}))
print(event_processor.invoke({"email": "admin@example.com"}))

#################### Tests #####################
from unittest.mock import Mock

def test_user_is_admin_returns_true_for_admin_user():
 mock_db = Mock()
 mock_db.get_role_by_email.return_value = "admin"

 result = user_is_admin("someone@example.com", mock_db)

 assert result is True

def test_user_is_admin_returns_false_for_non_admin_user():
 mock_db = Mock()
 mock_db.get_role_by_email.return_value = "user"

 result = user_is_admin("someone@example.com", mock_db)

 assert result is False

test_user_is_admin_returns_true_for_admin_user()
test_user_is_admin_returns_false_for_non_admin_user()

False
True

API Documentation

Event Processor

	
class src.event_processor.event_processor.EventProcessor(invocation_strategy: src.event_processor.invocation_strategies.InvocationStrategies = <InvocationStrategies.FIRST_MATCH: <class 'src.event_processor.invocation_strategies.FirstMatch'>>)

	A self-contained event processor.

	
add_subprocessor(subprocessor: src.event_processor.event_processor.EventProcessor)

	Add a subprocessor to this event processor

	Parameters

	subprocessor – The other event processor to add

	
invoke(event: Dict) → Any

	Invoke the correct processor for an event.

There may be multiple processors invoked, depending on the invocation strategy.

	Parameters

	event – The event to find a processor for

	Returns

	The return value of the processor

	
processor(event_filter: src.event_processor.filters.Filter, rank: int = 0)

	Register a new processor with the given filter and rank.

	Parameters

	
	event_filter – The filter for which to match events

	rank – This processor’s rank (when there are multiple matches for a single event)

Exceptions

Exceptions for event processor.

	
exception EventProcessorError

	General exception for the event-processor library.

	
exception FilterError

	Exception for failures related to filters.

	
exception InvocationError

	Exception for failures in invocation.

Filtering

Dependency Injection

Dependency injection and management facilities.

	
class dependencies.Depends(callable_: Callable, cache: bool = True)

	Class to designate a dependency

	
class dependencies.Event(dict_event: dict)

	Type to wrap a dict to be used as a dependency.

	
dependencies.call_with_injection(callable_: Callable, event: Optional[dependencies.Event] = None, cache: Optional[dict] = None, *args, **kwargs) → Optional[Any]

	Call a callable and inject required dependencies.

Note that keyword args that have the same name as the parameter used for a dependency will be overwritten with the
dependency’s injected value.

	Parameters

	
	callable – The callable to call

	event – The event for the current invocation

	cache – The dependency cache to use

	args – The args to pass to the callable

	kwargs – The kwargs to pass to the callable

	Returns

	The return value of the callable

	
dependencies.get_event_dependencies(callable_: Callable) → List[str]

	Get the parameter names for event dependencies.

	Parameters

	callable – The callable for which to get dependencies

	Returns

	A list of the parameters requiring the event

	
dependencies.get_required_dependencies(callable_: Callable) → Dict[str, dependencies.Depends]

	Get the required dependencies for a callable.

	Parameters

	callable – The callable for which to get dependencies

	Returns

	A mapping of callable argument names to dependencies

	
dependencies.resolve(dependency: dependencies.Depends, event: Optional[dependencies.Event] = None, cache: Optional[dict] = None) → Tuple[Optional[Any], bool]

	Resolve a dependency into a value.

The resulting values from dependencies are cached and re-used if a cache is supplied and the dependency itself
does not explicitly state that it does not want to be cached. Also, any dependency that depends on another
dependency where caching has been disabled will also not be cached (because the sub-value may change, which may in
turn change the value of the current dependency).

	Parameters

	
	dependency – The dependency to resolve

	event – The event for the current invocation

	cache – The cache for previously resolved dependencies

	Returns

	The tuple (resolved_value, cacheable)

 Python Module Index

 d |
 e

 		 	

 		
 d	

 	
 	
 dependencies	

 		 	

 		
 e	

 	
 	
 exceptions	

Index

 A
 | C
 | D
 | E
 | F
 | G
 | I
 | M
 | P
 | R

A

 	
 	add_subprocessor() (src.event_processor.event_processor.EventProcessor method)

C

 	
 	call_with_injection() (in module dependencies)

D

 	
 	
 dependencies

 	module

 	
 	Depends (class in dependencies)

E

 	
 	Event (class in dependencies)

 	EventProcessor (class in src.event_processor.event_processor)

 	
 	EventProcessorError

 	
 exceptions

 	module

F

 	
 	FilterError

G

 	
 	get_event_dependencies() (in module dependencies)

 	
 	get_required_dependencies() (in module dependencies)

I

 	
 	InvocationError

 	
 	invoke() (src.event_processor.event_processor.EventProcessor method)

M

 	
 	
 module

 	dependencies

 	exceptions

P

 	
 	processor() (src.event_processor.event_processor.EventProcessor method)

R

 	
 	resolve() (in module dependencies)

	v2.1.1: Fix negative ranks and document the -1 rank usage

	v2.1.0: Add number comparison filters

	v2.0.0: Refactor a lot of the internals, make filters more user friendly and dependency injection more intuitive

	v1.1.0: Add support for subprocessors

	v1.0.0: Move the state and decorators inside a class

	v0.0.1: Initial release

 nav.xhtml

 Table of Contents

 		
 Process Events In Style

 		
 Core Concepts

 		
 Processors

 		
 Filters

 		
 Dependencies

 		
 Example

 		
 Processors

 		
 Multiple Event Processors

 		
 Sub-Processors

 		
 Ranking Processors

 		
 Invocation Strategy

 		
 First Match

 		
 All Matches

 		
 No Matches

 		
 No Matches Strict

 		
 Example

 		
 Caveats

 		
 Filters

 		
 Accept

 		
 Exists

 		
 Eq

 		
 NumCmp

 		
 Lt, Leq, Gt, Geq

 		
 And

 		
 Or

 		
 Dependencies

 		
 Functional Dependencies

 		
 Simple Example

 		
 Caching Example

 		
 Nesting Example

 		
 Class Dependencies

 		
 Event Dependencies

 		
 Testing Processors

 		
 API Documentation

 		
 Event Processor

 		
 Exceptions

 		
 Filtering

 		
 Dependency Injection

_static/plus.png

_static/file.png

_static/minus.png

